
Vol. 2, No. 1 | January – June 2018

SJCMS | P-ISSN: 2520-0755 | E-ISSN: 2522-3003 © 2018 Sukkur IBA University – All Rights Reserved
20

Evaluation of Android Malware Detectors

Hassan Rafiq1, Muhammad Aleem1, Muhammad Arshad Islam1

Abstract:
Malware is an umbrella term used for viruses, worms, and Trojans. These days malware

is becoming a great threat to the Android users. A malware detector which is commonly known

as an antivirus or virus scanner avoids a malicious file to infiltrate into a system. With the

increasing usage of smartphones, malware is also becoming powerful to penetrate the mobile

devices. Traditional protection systems identify malware using signatures that can be

manipulated by various techniques. In this research paper, it has been demonstrated that the most

of the known commercial malware detectors cannot detect common code obfuscation

techniques. Moreover, we have evaluated resource utilization (CPU, memory, and battery)

consumed by several malware detectors.

Keywords: Malware detectors; Antivirus; Android; Hardware performance counter.

1. Introduction
A malware can penetrate into the host

devices through the several ways. For

example, a malware can integrate itself with a

downloaded file downloaded, or via infected

flash drives, or someone can intentionally

insert a malicious file into a system. A

malware developer can spread a malicious file

via email or by attaching it to an application

which apparently seems to be legitimate.

Generally, malware can be classified on the

basis of the propagation methods as discussed

by McGraw et al. [1].

A malware can cause a severe damage to

the infected devices, for example, it can

compromise confidentiality, integrity, and

availability of a system or network. Similarly,

keylogger class malware can penetrate into a

system to steal passwords and other sensitive

information. Additionally, a particular type of

malware commonly known as ransomware [2]

encrypts the data and demand money for the

data to be decrypted. Thus a malware can

cause loss of important data and also cause

huge financial loss to organizations and

individuals.

1
 Capital University of Science and Technology, Islamabad

Corresponding Email: aleem@cust.edu.pk

Given the widespread emergence of

Android malware, there is a crucial need to

adequately moderate or protect against these

threats. As indicated by the Intel

Security/McAfee April 20172 patterns report;

towards the end of the year2016, there were

more than 600 million malware variations

altogether. There were approximately 15

million distinctive portable malware

variations by the end of the year2016.

According to this report, nearly 08% of mobile

users have been infected by some kind of

smartphone-based malware. Thus, without an

in-depth understanding of mobile malware, it

is impractical to develop a reliable solution for

the detection of mobile malware. In contrast to

the existing mobile operating systems,

Android is targeted mostly due to the open-

source availability of this operating system

[3].

A malware detector or antivirus identifies

and scans a file using various mechanisms and

checks whether the file is infected (malicious)

or benign [4]. Generally, a malware detector

executes in a passive mode (in the

background) and scans a suspicious file. An

mailto:aleem@cust.edu.pk

Hassan Rafiq (et al.), Evaluation of Android Malware Detectors (pp. 20 - 28)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 2 No. 1 January – June 2018 © Sukkur IBA University

21

antivirus scans a file whenever a file is

accessed or it performs a complete system

scan on an explicit user request to scan every

file in the system. Generally, a full system

scan is applied and helpful when a user has

installed an antivirus program (first time) and

wants to ensure that there are no malicious

programs in a system.

Similar to the personal computers,

traditional approaches have been adopted to

protect mobile devices too from malware

threat. Mostly, malware detectors rely on the

virus definitions to detect malware. These

virus definitions are updated regularly i.e.,

every day or more often. Virus definitions

mostly consist of signatures of the known

malware families and variants. Malware

detectors have to continually keep up-to-date

with the latest malware definitions to be

effective for malware detection. Antivirus

tools employ a variety of tools to disassemble

malware for analysis. Malware detectors also

employ heuristics [4] which make a malware

detector more capable to identify new

malware even without the up-to-date virus

definitions.

In this paper, we have highlighted a

potential problem that the most of the

commercial malware detectors are unable to

detect obfuscated malware samples. With

code obfuscation, a developer can hide the

original algorithm or the logic of the code [3].

We have experimented using various types of

code obfuscation techniques (as listed in Table

4) to benchmark which malware detectors are

still able to identify a malicious code

obfuscated within a legitimate application.

Additionally, one of the key aspects of mobile

devices is energy conservation. Therefore, the

malware detectors are evaluated on the basis

of resource consumption reported by the key

performance counters including battery

consumption. Our research aims are to

benchmark the effectiveness of malware

detectors against the obfuscated malware.

Following are some of the contributions of

this work:

 Using several types of code

obfuscation techniques to test

Android malware detectors;

 Benchmarking android malware

detectors based on their malware

detection capability;

 Profiling and analysis of Android

malware detectors based on resource

usages such as CPU, memory, and

energy.

The structure of the rest of the paper is as

follows. Section 2 discusses the related

previous research works. In Section 3, we

present the proposed methodology for

benchmarking Android malware detectors.

Section 4 presents the experimental results

and discussion. Section 5 concludes the paper.

2. Background and Related Work

Android applications are developed in

Java. Java source code is packaged into an

Application (Apk) file which executes on the

Android devices [5].We use dex2jar [6] and

apktool [7] to convert the android applications

into the source code. After de-compilation

into code and resource files, the Apks can be

analyzed. In this paper, we de-compile known

malware samples and make changes to their

code without modifying the applications’

functionality.

2.1. Code Obfuscation Techniques

Code obfuscation [8] is mainly done to

hide the logic of the code so that the code

could not be understood after reverse

engineering. Code obfuscation changes the

size and content of the Apk file; however, the

main logic of the code is not modified. Code

obfuscation does not have any impact on the

semantics of a code. There are many code

obfuscation techniques which can be applied

to generate various code versions with the

same semantics.

In one of the recent work, Zheng et al. [9]

evaluated malware detection capabilities of

malware detectors by applying code

transformations. The authors developed

Hassan Rafiq (et al.), Evaluation of Android Malware Detectors (pp. 20 - 28)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 2 No. 1 January – June 2018 © Sukkur IBA University

22

different test cases of malware samples by

using several transformations and then

evaluated using virus total [10] platform.

Authors employ artificial code diversity

[11] as a code obfuscation method to evaluate

the malware detection platform i.e., virus

total. The authors prepared malware samples

using a tool named ADAM. This tool was

developed by the authors and employed for

the code obfuscation. As compared to this

work, we manually applied several

obfuscation techniques after reverse

engineering the malicious Apk file. Moreover,

we perform testing on well-known

commercial malware detectors.

Christodorescu and Jha [12] tested desktop

malware detectors in the similar manner as we

perform in this study. The results of their

experiments show that the most of the

malware detectors are unable to detect

malware samples. Moreover, we experiment

using six malware detectors as compared to

three tested by the authors in [12].

Collberg et al. [8] have discussed different

kinds of code obfuscation techniques. They

presented working and architecture of Java

code obfuscating tool named as Kava. We use

some of the mentioned code obfuscation

techniques presented by the authors in [8].

Christodorescu et al. [13] have proposed a

technique that suggests that the obfuscated

malware samples can be detected. However,

this detection is limited to detection of only

garbage and re-ordered code. In this work, we

use six code obfuscation techniques and their

combinations as compared to only three

employed by the authors to benchmarks

malware detectors.

Protsenko et al. [14] have proposed a tool

named as Pandora using can be used to apply

obfuscation. After that, the obfuscated code

can be tested using a malware detection tool

such virus total. In contrast, we perform

benchmarking of malware detectors using

commonly used code obfuscation techniques

and six most used malware detectors. In Table

1, a brief summary of the related work is

shown.

TABLE 1. Related work summary.

Reference and Methodology Strengths Weaknesses

- Semantics persevering

obfuscation techniques are

applied.

-Obfuscated samples

bypass malware detectors.

-Only three malware

detectors are tested.

- [6], Different levels of

obfuscation are used.

-Each level consists of different

combinations of code obfuscation

techniques.

-Checks software

plagiarism based on the

proposed technique

-Testing of malware

samples is performed on

virus total only.

- [10], Variants of a single

malware sample are prepared

-Each sample is tested using

malware detector “virus total”

-Malware samples are

automatically prepared

using a tool ADAM.

-Testing of malware

samples is performed on

virus total only.

-[14], Proposed a semantic-aware

malware detection technique.

-Can detect a malware

sample in which code

obfuscation is applied

-Can detect malware

based on only garbage

insertion, code

reordering, and register

renaming based

-Proposed a mechanism to detect

malicious files

-Detects malicious files based on

their behavior on the network.

-Obfuscated malware

samples can also be

detected

-Only applicable for

malware which access

network excessively

Hassan Rafiq (et al.), Evaluation of Android Malware Detectors (pp. 20 - 28)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 2 No. 1 January – June 2018 © Sukkur IBA University

23

3. Methodology
The detection capability of malware

detectors is tested by using obfuscated

malware samples which are prepared by

performing several different steps as shown in

Figure 1. Only those malware samples are

takes for code obfuscation which are detected

as malware in the original form. (i.e. Before

applying code obfuscation).

We prepare six different malware samples

from a single malware by applying different

code obfuscation techniques. The employed

six code obfuscation techniques are listed

below:

1. Variable Renaming [11]

2. Package Renaming [13]

3. Method Renaming [9]

4. Garbage Insertion [6]

5. Rebuilding [14]

6. Call Indirection [13]

1) Variable Renaming: All the variable

names are modified in the context of

variable renaming. Figure 1 shows an

example code obfuscation using variable

renaming.

Fig. 1. Variable renaming.

2) Package Renaming: is related to

changing package names of a given apk

using the Android Manifest file.

3) Method Renaming: similarly, in

method renaming names of all the method

is changed.

4) Garbage Insertion: Whereas in

garbage insertion, a garbage code is

inserted that does not change the semantics

of the application.

Listing 1: Indirect function call and garbage

code insertion.

In Listing 1, a while loop is shown with a

false condition. The execution control never

enters such loop and the enclosed code will

not be executed. Such kind of code is referred

as garbage code and can be inserted by the

malware writers to create code level dis-

similarity in malware applications.

5) Rebuilding: Another effective

technique that can be used to test the malware

detection capability of an antivirus or malware

detector is code rebuilding. When rebuilding

a code, the Apk is first decompiled and then is

recompiled without making any changes in its

resources and manifest file. Rebuilding

process does not change the content of the

Apk; however, it generally changes the byte

order [9] and the hash value of the application.

In most of the malware detectors, the detection

algorithms mainly rely on the hash signatures

of the files under investigation. Therefore,

malware writers exploit this fact to doge the

malware analysis tools.

6) Call indirection: is another effective

technique in which the original method calls

are re-programmed and shifted in some

dummy methods to make indirect function

1 void display()
2 {

3 cout<<”hello world”;
4 }

5 void show()
6 {

7 display();
8 }
9

10 void main()
11 {

12 display(); //Direct call
to display

13 //function
14 Show(); //Indirect call

to display
15 //function
16 while(0)

17 {
18 cout<<”garbage”;

//Garbage code
19 }
21 }

Hassan Rafiq (et al.), Evaluation of Android Malware Detectors (pp. 20 - 28)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 2 No. 1 January – June 2018 © Sukkur IBA University

24

calls. Listing 1 at line 14 shows an example of

call indirection.

Fig. 2. Proposed methodology.
Figure 2 shows the proposed methodology

used to benchmark malware detectors. The

first step shows that a sample malware Apk is

taken. We use malware application dataset

available at [15]. The malware sample may

belong to any known malware family. We

choose only those malware samples which

could be detected by the employed six

malware detectors.

The second step of the methodology is

based on decompiling Apks using dex2jar [6]

and apktool [7] into Java code. In the third

step, a new Android project is created based

on the decompiled Java code and XML design

files.

In the fourth step, obfuscation is applied to

the decompiled code. To obfuscate the code,

we employ the six obfuscation techniques and

their combinations. The output of each

obfuscated method is a new version of the

Apk; for example, after changing names of all

the variables the code is recompiled the

version of the Apk is saved separately. To

insert garbage-code, a redundant non-

executable code is inserted (as shown in

Listing 1) and is recompiled to generate the

Apk. Similarly, method calls indirection is

used to invoke methods via some other

indirect method as shown in lines 5-8 in

Listing 1. In addition to the six obfuscation

techniques, several other combinations

(shown in Table 4) are used to generate

several versions of the Apks.

4. Results and Discussion

4.1. Dataset and Experimental Setup

The experimentations were performed

using an Android system with following

specifications, i.e., CPU 1.3GHZ, quad-core,

01GBs of main memory, battery 200 mAH

and Android version 4.2 (jelly beans). Table 2

shows the names of the Android malware

detectors which have been tested.

TABLE 2. Malware detectors evaluated.

Product name Total downloads

(millions)

Norton Mobile

Security

5M-10M

AntiVirus Free 50M-100M

ESET mobile security 500K-1M

Dr Web 10M-50M

Lookout mobile

security

10M-50M

Zoner Antivirus 1M-5M

TABLE 3. Malware samples used for testing.

Malware Details

Love Trap A trojan that sends SMS

DroidDream
Creates spoof version of the

original application

FakePlayer Advertises unwanted products

Bgserv Fake mobile cleanup tool

Basebridge
Performs harmful actions

without user’s knowledge

Plankton
Sends host’s information to a

remote server

Geinim-A Corrupts the applications

LuckyCat
Opens backdoor in application

to steal information

HippoSMS
Sends SMS to a hard-coded

number

NickySpy
Sends host’s information to are

mote server

Hassan Rafiq (et al.), Evaluation of Android Malware Detectors (pp. 20 - 28)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 2 No. 1 January – June 2018 © Sukkur IBA University

25

Table 3 shows the names and functionality

of the malware samples which are used to

prepare the test cases to evaluate the malware

detectors shown in Table 2.

All the malware samples shown in Table 3

are detected as malicious in their original form

(i.e., before obfuscation is applied) by all the

malware detectors shown in Table 2. Some of

the malware detectors have been omitted from

Table 2 because they were unable to detect the

malware samples as malicious which are

shown in Table 3. All the malware detectors

are directly downloaded from the official

Android application market i.e., Google Play.

Table 4 shows the list of obfuscation

techniques that have been used in this paper to

evaluate malware detectors.

TABLE 4. Labels of code obfuscation

techniques.

Labels Technique

VR Variable Renaming

MR Method Renaming

REB Rebuilding

GCI
Garbage code

insertion

RP Package renaming

CI Call indirection

4.2. Results

Table 5 shows the minimal combinations

of obfuscation techniques required to evade a

malware detector. For example, LoveTrap

requires variable renaming, method renaming,

and package renaming to evade Norton

antivirus, Antivirus free, ESET and Lookout.

Love Trap remains undetected by Dr. Web if

package renaming and call indirection is

applied, whereas Zoner cannot detect

LoveTrap if simple rebuilding is applied to it.

Similarly, when we consider DroidDream

malware sample then the results shown in

Table 5highlight that the Norton and the ESET

cannot detect DroidDream sample for the

combination of package renaming and

rebuilding obfuscations. Whereas, in case of

Dr. Web malware detector, the

Lookout,Zoner, and the DroidDream samples

go undetected (with simple application re-

building obfuscations).

In case of Bgserv malware sample, the

results of Table 5 show that the Norton

malware detector is evaded by the obfuscation

combination of package renaming, variable

renaming, and method renaming. The

AntiVirus free is evaded by the obfuscation

combination of package renaming and call

indirection. The malware sample Bgserv

could not be detected as malicious by the

ESET and Lookouttools for the obfuscation

combinations based on package, variable, and

method renaming. The malware detector Dr.

Web also could not detect Bgserv malware

sample based on call indirection obfuscation.

The malware detector Zoner could not detect

Bgserv as malicious even when a simple

rebuilding was applied to it. The Hippo SMS

malware evaded malware detection capability

of Antivirus Free, ESET, and Dr. Web when a

combination of package renaming and

rebuilding was applied. The hippo SMS

evaded Lookout and Zoner malware detectors

when the malware sample was simply rebuilt.

Keeping in view the results of Table 5, we

may conclude that the Norton antivirus is a

hard nut to crack because it can only be evaded

if complex obfuscation is applied to a malware

sample i.e., a combination of variable

renaming, method renaming, and package

renaming. On the other hand, the Zoner

malware detector proves to be the weakest

among the employed anti-malware because it

can be evaded by simply re-building a

malware sample. The rest of the malware

detectors (as shown in Table 5) are not

resilient to several combinations of code

obfuscation techniques. Most of the malware

detectors are able to detect the re-build

samples; however, they are unable to detect

malware samples when several obfuscations

are used collectively.

Figure 3 shows the malware detection

results for different malware detectors against

the employed obfuscation techniques. In

Figure 3 , the Y-axis shows the tested malware

detectors and X-axis shows the percentage of

Hassan Rafiq (et al.), Evaluation of Android Malware Detectors (pp. 20 - 28)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 2 No. 1 January – June 2018 © Sukkur IBA University

26

samples evaded the employed malware

detectors. Figure 3 presents the results of the

malware sample Hippo SMS and its versions

based on code obfuscation. For Norton

antivirus, the results show that most of the

code obfuscations have been detected;

however, the combination of Package

Renaming (RP), Variable Renaming (VR),

and Method Renaming (MR) obfuscation

techniques resulted in 70% undetected cases.

For the combination of package renaming and

rebuilding results in only 20% of un-detected

cases for the Norton antivirus. In our

experiments, we observed that the variable

renaming, method renaming, package

renaming, call indirection, and simple

rebuilding are easily detectable using the

Norton antivirus. Moreover, Figure 3 shows

the detection results of other antiviruses for

the employed code obfuscation methods. As

shown in Figure 3, simple code rebuilding is

detected by most of the antiviruses except Dr

web (30% samples undetected) and lookout

(10% samples undetected). The combined

obfuscation based on package renaming and

call indirection also show a large percentage

of un-detectable malware samples. The results

show that the most stealth obfuscation

samples were based on the combination of

package, method, and variable renaming.

Similarly, a higher evading result was shown

for the code obfuscations based on simple

package renaming combined with call

indirect.

Next, we perform resource consumption

analysis for the employed 06 android malware

detectors. Table 6 shows the results obtained

using the benchmarking tool Mobibench [16].

Table 6 presents the resource consumption

chart for 06 malware considering the CPU,

memory, battery, and storage requirements.

Mobibench employs Android APIs to

calculate memory and processor usage. To

calculate battery consumed by a malware

detector, the Mobibench requires an Android

device to run in a clean state (i.e., no other

application being executed at that time of

instance). Mobibench records the battery level

of the device before starting the malware

detector and again record the battery level

after the malware detector finishes its task (of

screening). The battery consumed is shown in

units milli-ampere-hour (mAH) as shown in

Table 6.

Table 6 shows that Dr Web consumes 16%

CPU, 56% RAM or memory, 0.91 mAH

battery, and 7.13 MBs size on disk. Similarly,

the performance analysis of other malware

detectors is shown in Table 6. These results

show that the Norton antivirus is the highest

resource consuming malware detector

whereas the zoner malware detector consumes

the least device resources as compared to other

malware detectors.

5. Conclusion

The experiments performed in this

research show that there are serious

shortcomings in the commercially available

malware detectors (against the obfuscated

malware). To demonstrate these, we employ

several malware detectors and tested those

using many combinations of code

obfuscations. Most of the time, an obfuscated

malware is undetectable. However, a few

Android malware detectors (such as Norton,

antivirus free, etc.) are able to detect malware

obfuscated using multiple techniques. The

results clearly show that well known

commercial malware detectors are not

resilient to common code obfuscation

techniques. In addition to this, it has also been

observed that the malware detectors which

have good detection rate also consume more

device resources especially battery and

storage space. In future, we intend to research

the mechanism using which a malware

detector should be able to detect the

obfuscation applied to the original malware

sample; hence, improving overall malware

detection rate.

Hassan Rafiq (et al.), Evaluation of Android Malware Detectors (pp. 20 - 28)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 2 No. 1 January – June 2018 © Sukkur IBA University

27

TABLE 5. Evaluation summary.

TABLE 6. Resources consumption analysis.

Antivirus CPU(%) RAM(%)
Battery

(mAH)

Storage Size

(MB)

Dr Web 16 56 0.91 7.13

AntiVirus

Free
22 65 0.84 4.7

Lookout 18 69 0.9 9.05

Norton 30 60 1 17.15

ESET 21 64 0.98 7.93

Zoner 19 56 0.8 1.56

Fig. 3. Experimentation results.

Love

Trap

Droid

Drea

m

Fake

Player
Bgserv

Base

Bride

Plankto

n

Geinim-

A

Luck

y Cat

HippoS

MS

NickySp

y.B

Norto

n

 RP+VR

+MR

RP+R

EB
RP+VR

RP+VR

+MR
VR+MR

RP+VR

+MR

RP+VR

+MR

VR+

MR

RP+VR

+MR

RP+VR

+MR

Antivi

rus

Free

RP+VR

+MR

VR+

MR

RP+VR

+MR
RP+CI RP+CI

RP+VR

+MR
VR+MR

RP+R

EB
RP+CI

RP+VR

+MR

ESET
 RP+VR

+MR

RP+R

EB
CI

RP+VR

+MR

RP+VR

+MR
RP+CI

RP+RE

B

RP+R

EB
RP+CI RP+CI

Dr.

Web

RP+CI REB

RP+RE

B
CI CI CI

RP+RE

B

RP+R

EB
RP+CI

RP+RE

B

Looko

ut

 RP+VR

+MR
REB RP+VR

RP+RE

B
RP+CI REB REB REB REB

RP+RE

B

Zoner REB REB REB REB REB REB REB REB REB REB

Hassan Rafiq (et al.), Evaluation of Android Malware Detectors (pp. 20 - 28)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 2 No. 1 January – June 2018 © Sukkur IBA University

28

REFERENCES

[1] G. McGraw and G. Morrisett, "Attacking

malicious Code: report to the InfoSec
research council," IEEE Software
Magzine, vol. 17, no. 5, Sep.-Oct., 2000.

[2] S. Aurangzeb, M. Aleem, M. A. Iqbal,
and M. A. Islam, "Ransomware: A
Survey and Trends," Journal of
Information Assurance & Security, vol. 6,
no. 2, 2017.

[3] M. P. Dalla and F. Maggi, "Testing
android malware detectors against code
obfuscationobfuscation: a
systematization of knowledge and unified
methodology," Journal of Computer
Virology and Hacking Techniques, vol.
13, no. 3, 2017.

[4] "How antivirus works.," [Online].
Available: https://goo.gl/4HxMu1.
[Accessed 23 7 2017].

[5] "Android Developers:," [Online].
Available: https://goo.gl/q9sLWI..
[Accessed 22 5 2017].

[6] "Dex2jar," [Online]. Available:
http://code.google.com/p/dex2jar/..
[Accessed 22 5 2017].

[7] "Apktool.," [Online]. Available:
http://code.google.com/p/apktool/..
[Accessed 22 5 2017].

[8] C. Collberg, C. Thomborson, and D.
Low, "A Taxonomy of Obfuscating
Transformations," Department of
Computer Science, The University of
Auckland, New Zealand, 1997.

[9] M. Zheng, P. P. Lee, and J. C. Lui,
"ADAM: an automatic and extensible
platform to stress test android," in
International Conference on Detection of
Intrusions and Malware, and
Vulnerability Assessment, Springer
Berlin/Heidelberg.

[10] "VirusTotal," [Online]. Available:
https://goo.gl/DlTruF. [Accessed 22 5
2017].

[11] J. Nagra, C. Thomborson, and C.
Collberg, "A functional taxonomy for
software watermarking," Australian
Computer Science Communications, vol.
24, no. 1, pp. 177-186, 2002.

[12] . M. Christodorescu and S. Jha, "Testing
malware detectors.," ACM SIGSOFT
Software Engineering Notes, vol. 29, no.
4, pp. 34-44, 2004.

[13] M. Christodorescu, S. Jha, S. Seshia, . D.
Song, and R. E. Bryant, "Semantics-
aware malware detection," IEEE

symposium on Security and Privacy,
2005.

[14] M. Protsenko and . T. Muller, "Pandora
applies non-deterministic obfuscation
randomly to android.," in "The Americas"
(MALWARE), 2013.

[15] "Contagio minidump," [Online].
Available: https://tinyurl.com/6b6v7jp.
[Accessed 27 5 2017].

[16] A. Zaman and Z. Imtiaz, "MobiBench,"
Capital University of Science and
Technology, Islamabad., 2016.

