Orientation Detection of Unequally Spaced Complexed Grounding Grids using Transient Electromagnetic Method

Usman Zia Saleem¹, Safdar Raza¹, Inzamam Ul Haq², Muhammad Bilal Ashraf³

Abstract:

Configuration of Grounding Grid is required for all currently proposed Fault Diagnosing methods of Grounding Grid if the configuration is unknown then Grounding Grid Configuration detection techniques are applied and all of these latest techniques further requires the oriented angle at which the grid is laid and if the orientation of the grid is unknown or incorrect then the calculated configuration will be misleading and incorrect and we will fail to diagnose the Grounding Grid Fault. In this paper Transient Electromagnetic Method approach is used for orientation detection of Unequally Spaced Grounding Grids which are categorized as complexed grids further classified as Unequally spaced grounding grids with diagonal element at larger mesh, smaller mesh or in both of these meshes. In TEM method Equivalent Resistivities and Magnetic Field Intensities are found at eight different points in a circular path of constant radius r to determine the size of meshes and the presence of conductors whether diagonal or not diagonal. Model Designing and Simulations are performed using COMSOL Multiphysics 5.4 software, values of Magnetic Field Intensities and EMF are derived from COMSOL Multiphysics 5.4 software and the EMF values are further called in a MATLAB code to run through number of mathematical formulations and Equivalent Resistivity is obtained for all desired points. Obtained values of Equivalent Resistivity and Magnetic Field Intensities verifies the effectiveness of the proposed approach for orientation detection of complexed grounding grid.

Keywords: Equivalent Resistivity, Grounding Grid, Magnetic Field Intensity, Orientation Detection, Transient Electromagnetic Method

1. Introduction

Grounding system provides alternate route to the high flowing currents due to any risk of Fault by sinking high currents through Earth before the Fault gets worst in form of electrical shock or hazardous fire. Grounding means low resistive path between any desired electrical equipment and the ground. Grounding is achieved by properly connecting the electrical equipment through cable into the ground using relatively large extent of body to maximize the contact area with earth and keep the potential of connecting body to the potential of Ground [1]. The depth of the grounding system depends upon the value of resistance it offers NEC recommends that if the grounding rods are to be considers for grounding than 8 to 10 foot ground rod fails to meet the minimum resistance requirement Mostly 30 foot provides us with 5 ohm or less resistance
which is feasible and the grounding resistance changes mostly in the first 20 foot.

In a substation the grounding system consists of horizontally placed interlinked bare conductors with equal or unequal spacing within few meters apart, buried below the earth surface at about 0.7 to 1 meter depth.

Grounding system as discussed above provide finite resistance 1 ohm for Large Stations 1-5 ohm for distribution substations relatively small. This resistance is known as Ground resistance. The Potential of the Grounding system is zero under normal conditions. Under faulty condition when large amount passes into the earth then the Ground potential of the faulty area rises with respect to the Ground potential of remote earth away from the faulty area. So the potential rise of the specified part of the earth is known as GPR ground potential rise and it value increases with the severity of the fault and the increase in faulty current.

Mesh Voltage and Step Voltage are two essential parameters which depends upon the value of Ground resistance and GPR. The conductors present in the grounding grid system divide these voltages into the meshes present under the surface and the potential on the earth surface. Mesh voltage is the maximum value of touch voltage offered within a specified surrounding. Step Voltage is the potential difference between the feet of a person standing near an energized grounding grid when the fault is occurring.

Human Body offers non inductive impedance and purely resistive impedance for DC/AC voltage of 50 or 60 Hz standard implemented worldwide. Human body offers resistance from 500 to 5000 ohm but the average value is mostly considered as 1000 ohm [2].

The Low impedance path is provided by installing Grounding Grid and can be found on all stages of Electrical network from Power Plants to Distribution units known as substations. The Grounding grid is made of Steel, Cooper clad wires, Galvanized steel and Cooper Steel Alloys. These conductors are joint together and buried under the soil switched for Lightning Strokes and Surges produced while switching high power loads [3, 4].

Grounding Grid’s efficiency depends upon the condition of conductors of Grounding Grid the conductors can be damaged due to corrosion due to presence of air gaps consisting Oxygen and the moisture. Both these elements begin the process of oxidation of conductors and damages the conductor current carrying capacity and can lead on to cut off the path entirely through Breakdown of conductors. Life estimation of Grounding grid depends upon the overall size of Grounding Grid and also the precautionary preventive maintenances done over the regular recommended intervals [5] Performance can be enhanced by reducing fault currents [6] or optimizing the overall configuration of Grounding Grid [7].

High Faults currents in Grounding Grid can result in thermal and mechanical stresses so incase if we are unable to reduce the fault then we are required to design Grounding Grid to bear the offered high faulty current [8].

2. Related Work

Transient analysis technique is quite old and have been using for grounding systems using different models such as Transmission Line models (TL Models) [9-13]. Circuit Theory Models [14, 15] and Antenna theory models [16-21]. Researches are also performed on Comparative analysis between
Circuit Theory Model is quite old and significantly simplified model due to which its accuracy is compromised also, we need to mention that surge propagation delay cannot be predicted using circuit theory model. TL Transmission Line method is feasible for finding surge propagation delay and computational cost of this transient analysis technique is less but TL method does not consider earth-air interface so ultimately the solution is compromised for some higher frequencies. Antenna theory models are best for small grounding grid system as it the most accurate with high computational time and the complexity of this technique increases with the size of grounding grid.

Previously research work have been performed on finding Grounding Grid Orientation through TEM method but only for Equally Spaced and Unequally Spaced without diagonal and the recommended more work needs to be done for Unequally spaced Grounding Grids with Diagonal Branches and this paper covers all the recommended research scopes [23].

a) FAULT DIAGNOSIS

There are multiple research groups which are currently working on fault diagnosis of grounding grid. These research fields are mentioned below.

i. Electric Network Theory Method.

ii. Electromagnetic Field Theory Method.

iii. Electrochemical Detection Theory Method.

In Electric Network Theory Method we form nonlinear equations using surface potential difference and port resistance [24-28] these nonlinear equations can further used to diagnose grounding grid faults easily but this method requires the data regarding configuration of grounding grids.

Electrochemical Methods can easily identify the corrosion of grounding grid conductors but the cannot find the breakage point of grounding grid [29].

Transient Electromagnetic method [30-32] is most feasible so far in this method ramp shaped current signal is injected he change in magnetic field produces secondary currents in the grounding conductor present below the ground level through which equivalent resistivity is calculated using inversion calculations these values of resistivity are used to identify faults in grounding grid.

b) CONFIGURATION

Configuration of grounding grid can be used as fault detection and also for improving the efficiency of the Grounding Grid. Research group working on the relation between the efficiency and the changing configuration but the research group related to the configuration for fault diagnosis is not so active and creates a research gap [33]. First method is to record the magnetic intensity produced on the surface of the earth created due to the injection of sinusoidal current in the grounding mesh [34]. Derivative Methods are also quite famous for finding topology by applying 1st and 3rd derivatives on the magnetic field intensity recorded on the surface of the grid [35]. For specified angled branches the configuration can be found by taking circle and line derivatives of the magnetic flux density found on the surface of the earth [36]. Transient Electromagnetic Method is the latest and most accurate method for finding the configuration of the Grounding grid.

c) ORIENTATION

As we have already discussed that fault diagnosis is done accurately when the configuration of the grid is known but the configuration of the grounding grid is not always known and configuration of old grounding grids which have most probability of getting faulty are mostly unknown or lost so here the configuration detection techniques are applied all of the so far known techniques delivers inaccurate results if the grounding grid is installed at an angle to the plane of earth as we usually consider it parallel to the plane of earth for finding configuration so when the detected configuration is not accurate we will
be unable to trace the faults in grounding grid as we may have gone on a wrong track initially ultimately getting nowhere near the fault so from the above discussion we can verify that accurate configuration of the Grounding Grid and the accurate location of faults can be diagnosed if we have the knowledge about at what angle the grid is laid.

So far there is proposed method for orientation detection of grounding grid derivative method based novel techniques along with the concept of finding geometry of mesh to further find out the angle of the grounding grid [37]. In this method direct current is injected into the grounding grid mesh and as a result the magnetic field density are recorded on the surface of the earth derivatives are taken of these densities in a circular path starting from the center of a vertical conductor so all the adjacent branches are found in 360 degrees.

The main drawback of the above-mentioned technique is that noise may add in the generated magnetic fields densities of the grounding grid by interacting with the external Electromagnetic fields of the nearby equipment.

As we have discussed earlier the importance of the orientation detection of Grounding Grid. I propose a TEM method for orientation detection of grounding grid so that we don’t have to waste time on soil excavation of entire grid despite a specified point where fault exists.

When we manage to find the Oriented angle of the grid we can then proceed further to detect its complete configuration or Topology which was previously not known due to the mishandling if the Diagrams or not following Diagram while erection of grounding grid or changing the angle parameters last minute to overcome any physical challenge faced a that time.

So, this Methodology comes in handy whenever the angle of the grid is unknown or varies from the mentioned angle provided in manuals whenever the grid is not parallel to the earth’s plane.

3. Proposed Methodology

3.1. Transient Electromagnetic Method TEM

TEM is mostly popular for Geological Exploration for Onshore exploration and Offshore exploration. Exploration of Minerals, Oil, Gas and Ground Water is performed and also being used for environmental mapping. Water filled mining, Tunnel designing [38-44].

The Figure 4 is the schematic layout of a Basic TEM system which consists of two coils one of them is transmitter coil and one of them is receiver coil. Transmitter coil also known as primary coil is injected with current pulse of ramp wave as a result magnetic field is produced when current ramp signal is switched
off as a result during switching time an emf is produced in the surrounding conductor this stored emf further produced secondary magnetic field in the transmitter coil while the current signal is still switched off.

Fig 4. Diagram of Generalized Transient Electro Magnetic Method.

The Figure 5 shows the injected ramp current wave which has both ON time and OFF time ramp signal are used to switch ON and switch OFF the current during switching OFF time period due to changing value of decreasing current EMF is induced in the opposite direction this EMF is further discharged in form of Magnetic Field during OFF time of current signal.

Fig. 5. Basic Nomenclature and Principles of the TEM.

Figure 5 defines the working and principles of TEM method.

a) Current Signal injected in Transmitter Loop.

b) EMF induced in surrounding Conductor.

c) Secondary Magnetic Field produced in Receiver Coil.

3.2. TEM for Grounding Grid

Transmitter Coil is placed 50 cm above the ground and made up with pure copper (Copper selected from Built-In Materials of COMSOL) it is Torus shaped having major radius of 0.15 m and minor radius of 0.02 m all along 360 degrees the Transmitter coil is injected with 16A Current Pulse with wave form shown in the Figure 6 and the receiver coil is supposed to be the center point of the coil at which simulation data during OFF and ON time is extracted such as magnetic field intensities and EMF with time step of 10 µs for 600 time samples during first 500 time steps the transmitter coil is ON and energized with 16A current pulse and for last 100 time samples transmitter coil is OFF and it is the vital data that is extracted in form of Text files for both Magnetic field intensities and EMF. The entire process is repeated for all the desired coordinates and the data is store in 8 different text files.

Magnetic field intensities of last 100 samples from 0.00501 sec to 0.006 sec are processed to calculate absolute average of all 100 values for each desired location.

EMF during OFF time of last 100 samples from 0.00501 sec to 0.006 sec are imported into MS Excel Spreadsheet and further these Excel sheets are called in MATLAB code that are used in the equations for further finding equivalent resistivity for all desired 8 locations are evaluated.
3.3. Formulation of Apparent Resistivity

Magnetic field intensities are produced in all directions along all axis due to eddy currents the magnetic field intensity along z axis which is coming out of the earth surface can be easily found using.

\[H_z = \frac{l}{2a} \left[\frac{3}{\sqrt{\pi} u} e^{-u} + \left(1 - \frac{3}{2u^2} \right) \text{erf}(u) \right] \] \hspace{1cm} (1)

\[u = 0a, \text{ “a” is the radius of the transmitter coil loop, erf}(u) \text{ is error function of } u \text{ variable.} \]

By taking derivative with respect to u of Equation (1) we will have E(t)

\[\frac{dH_z}{dt} = E(t) = \frac{l}{\sigma a^3} \left[3 \text{erf}(u) - \frac{2}{\sqrt{\pi}} u(3 + 2u^2) e^{-u^2} \right] \] \hspace{1cm} (2)

Formula for calculating erf(u) is

\[\text{erf}(u) = \frac{2}{\sqrt{\pi}} \int_0^u e^{-t^2} dt \] \hspace{1cm} (3)

Error function gives us the value of probability for which if desired value is within the specified range.

u is the parameter of Transient Magnetic field and is expressed as following

\[u = \sqrt{\frac{\mu_o \sigma a^2}{4t}} = 0a \] \hspace{1cm} (4)

Taking square of Equation (4) will give us following Equation.

\[u^2 = \frac{\mu_o \sigma a^2}{4t} \] \hspace{1cm} (5)

Rearranging the Equation (5) for the value of Conductivity (\(\sigma \)) we will get.

\[\sigma = \frac{4u^2 t}{\mu_o a^2} \] \hspace{1cm} (6)

Putting the value of conductivity in Equation (2).

\[E(t) = \frac{l}{4u^2 t} \left[3 \text{erf}(u) - \frac{2}{\sqrt{\pi}} u(3 + 2u^2) e^{-u^2} \right] \] \hspace{1cm} (7)

\[E(t) = \frac{l \mu_o}{4u^2 ta} \left[3 \text{erf}(u) - \frac{2}{\sqrt{\pi}} u(3 + 2u^2) e^{-u^2} \right] \] \hspace{1cm} (8)

\[3 \text{erf}(u) - \frac{2}{\sqrt{\pi}} u(3 + 2u^2) e^{-u^2} - \frac{E(t)4u^2 ta}{\mu_o} = 0 \] \hspace{1cm} (9)

Rewriting Equation (9) as function of u.

\[F(u) = 3 \text{erf}(u) - \frac{2}{\sqrt{\pi}} u(3 + 2u^2) e^{-u^2} - \frac{E(t)4u^2 ta}{\mu_o} = 0 \] \hspace{1cm} (10)

As we know that conductivity and resistivity have inverse relation so

\[\rho = \frac{1}{\sigma} \] \hspace{1cm} (11)

Putting the value of conductivity (\(\sigma \)) in Equation (11) from Equation (6)

\[\rho(t) = \sqrt{\frac{\mu_o a^2}{4u^2 t}} \] \hspace{1cm} (12)

Parameter “u” can be obtained by optimizing Equation (10).

Apparent Resistivity at any sampling time ti in terms of “u” can be expressed as

\[\rho(t_i) = \sqrt{\frac{\mu_o a^2}{4u^2 t_i}} \] \hspace{1cm} (13)

Equation for finding vertical depth (d) of induced eddy currents.

\[d = \frac{4}{\sqrt{\pi}} \sqrt{\frac{t \rho}{\mu}} \] \hspace{1cm} (14)

Equation for finding velocity (v) of induced eddy currents.

Fig. 6. Finalized Input Current Source Wave Form
\[v = \frac{2}{\sqrt{n}} \sqrt{\frac{\rho}{\mu}} \]

Equation for finding Downward Velocity (v) between two consecutive samples

\[v = \frac{d_{i+1} - d_i}{t_{i+1} - t_i} \]

Comparing Equation (15) and Equation (16)

\[\frac{d_{i+1} - d_i}{t_{i+1} - t_i} = \frac{2}{\sqrt{n}} \sqrt{\frac{\rho}{\mu}} \]

Taking square of the above Equation

\[\frac{(d_{i+1} - d_i)^2}{(t_{i+1} - t_i)^2} = \frac{4 \rho}{\pi \mu} \]

Rearranging the above Equation (18)

\[\rho_r = \frac{(d_{i+1} - d_i)^2}{(t_{i+1} - t_i)^2} \left(\frac{\pi \mu}{4} \right) \]

From Equation (14) depth can be rewritten for two consecutive time samples \(t_i \) and \(t_{i+1} \)

\[d_{i+1} - d_i = \frac{4}{\sqrt{n \mu}} \left(\sqrt{t_{i+1} \rho_{i+1}} - \sqrt{t_i \rho_i} \right) \]

Taking square of the above Equation (20)

\[(d_{i+1} - d_i)^2 = \frac{16}{\pi \mu} \left(\sqrt{t_{i+1} \rho_{i+1}} - \sqrt{t_i \rho_i} \right)^2 \]

Putting Equation (20) in Equation (18)

\[\rho_r = \frac{\pi \mu 16}{4 \rho_{i+1}} \left(\sqrt{t_{i+1} \rho_{i+1}} - \sqrt{t_i \rho_i} \right)^2 \left(\frac{1}{(t_{i+1} - t_i)} \right) \]

Rearranging above Equation

\[\rho_r = 4t \left(\sqrt{t_{i+1} \rho_{i+1}} - \sqrt{t_i \rho_i} \right)^2 \left(\frac{1}{(t_{i+1} - t_i)} \right) \]

Here \(t \) is the average time of the consecutive samples can be expressed as

\[t = \frac{t_{i+1} + t_i}{2} \]

Equivalent resistivity \(\rho_r \) can be calculated by using Equation (23) in Equation (22)

\[\rho_r = 4. \left(\frac{\sqrt{t_{i+1} \rho_{i+1}} - \sqrt{t_i \rho_i}}{(t_{i+1} - t_i)} \right)^2 \left(\frac{t_{i+1} + t_i}{2} \right) \]

3.4. Mathematical Modelling

Function expressed in Equation (10) is the main function of the proposed research model.

Following 8 Inputs are used in the proposed functions to get desired outputs.

\[e = 2.718 \]

\[I=Transmitter \ Current = 16\text{Amp} \]

\[\text{Vacuum Permeability}= \mu_0 = 4*\text{Pi}*10^{-7} \text{H/m} \]

\[a=radius \ of \ transmitter \ loop = 0.15 \text{m} \]

\[\text{=conductivity \ of \ medium} = 4.032*10^6 \text{S/m} \]

\[t= \text{sampling \ time} = [0.00501:0.001:0.006] \text{sec} \]

\[\text{Error \ Function}=erf(u) = \frac{2}{\sqrt{\pi}} \int_{0}^{u} e^{-u^2} \text{dt} \]

\[\text{Magnetic \ Permeability}= \mu = \frac{n\sigma a^2}{4\pi} \]

Following Outputs are obtained as end results.

\[\text{Apparent} \ Resistivity = \rho(t) = \sqrt{\frac{\mu a^2}{4\pi t}} \]

\[\text{Apparent Resistivity is the resistivity of any material that can be derived from above mentioned formula using Vacuum / Magnetic Permeability, radius of transmitter Loop at any specific single time sample t.} \]

\[\text{Equivalent Resistivity} = \rho_r \]

\[\rho_r = 4. \left(\frac{\sqrt{t_{i+1} \rho_{i+1}} - \sqrt{t_i \rho_i}}{(t_{i+1} - t_i)} \right)^2 \left(\frac{t_{i+1} + t_i}{2} \right) \]

Equivalent Resistivity is the basically the equivalence of two apparent resistivities of consecutive time samples such as \(\rho(t), \rho(t+1) \) and in the end average of these equivalent resistivities are calculated evaluated from all time samples.

4. Results and Discussions

4.1. Simulation Model Designing

Both of the figures below Figure 7 and Figure 8 both are the designed models of
COMSOL Multiphysics the two Dimensional and 3-Dimensional View of the model the workspace dimensions are also mentioned top most layer is for Air and the bottom layer is for ground.

Ground Layer (Soil Material is selected from Minerals, Rocks and Soil section of Material Library in COMSOL) is square cube shaped 6 meter in length and 6 meter in width and the depth is 0.7 meters is set to be homogenous and its conductivity is set at 0.2 S/m and resistivity 5Ω.m.

Air Layer (Air Material Imported from Built-In Materials of COMSOL) is also solid square cube 6 meters in length and 6 meters in width and 0.3 meter in depth having set with the properties of air.

Grounding Grid Mesh is buried 0.5 meters below the Earth surface right in the middle having dimensions of 4x4 meter Grid consists of two 1.5x2 meter loops and two 3.5x2 meter loops connected together it is made up with Steel Alloy ASI 4340 imported from Built In Material List and having resistivity of 2.48×10^{-7} Ω.m. The radius of the conductor is 10 cm.

![Fig. 7. COMSOL Multiphysics 2D Model of Unequally Spaced Mesh with Smaller Diagonal Branch for Simulation](image)

Fig. 7. COMSOL Multiphysics 2D Model of Unequally Spaced Mesh with Smaller Diagonal Branch for Simulation

Fig. 8. COMSOL Multiphysics 3D Model of Unequally Spaced Mesh with Smaller Diagonal Branch for Simulation.

4.2. Calculations of Desired Coordinates

Here all coordinates are calculated for which simulations will take place in a circular path of 1m in radius and having center at the joining point of all four meshes which are equally spaced and the coordinates will be (3,3) from the Origin reference to model placement for simulation in COMSOL. So, by using the angles we can find out the x and y coordinates as following.

1. Coordinate C1 at θ_1:

\[\theta_1 = 0^\circ \]

Radius of circle = $r = 1$ meter.

\[x_1 = r \cdot \cos \theta_1 = 1 \cdot \cos(0^\circ) = 1 \]
\[y_1 = r \cdot \sin \theta_1 = 1 \cdot \sin(0^\circ) = 0 \]
\[x_0 = 3, y_0 = 3, \]
\[(X_1, Y_1) = (x_0 + x_1, y_0 + y_1) = (3 + 1, 3 + 0) \]
\[C_1 = (X_1, Y_1) = (4, 3) \]

2. Coordinate C2 at θ_2:

\[\theta_2 = 45^\circ \]

Radius of circle = $r = 1$ meter.

\[x_2 = r \cdot \cos \theta_2 = 1 \cdot \cos(45^\circ) = 0.7071 \]
\[y_2 = r \cdot \sin \theta_2 = 1 \cdot \sin(45^\circ) = 0.7071 \]
\[x_0 = 3, y_0 = 3, \]
\[(X_2, Y_2) = (x_2 + x_2, y_2 + y_2) \]
\[= (3 + 0.7071,3 + 0.7071) \]
\[C_2 = (X_2, Y_2) = (3.7071,3.7071) \]

3. Coordinate C3 at \(\theta_3 \):
\[\theta_3 = 90^\circ \]
Radius of circle = \(r = 1 \) meter.
\[x_3 = r \cdot \cos \theta_3 = 1 \cdot \cos (90^\circ) = 0 \]
\[y_3 = r \cdot \sin \theta_3 = 1 \cdot \sin (90^\circ) = 1 \]
\[x_0 = 3, y_0 = 3 \]
\[(X_3, Y_3) = (x_0 + x_3, y_0 + y_3) \]
\[= (3 + 0.3 + 1) \]
\[C_3 = (X_3, Y_3) = (3,4) \]

4. Coordinate C4 at \(\theta_4 \):
\[\theta_4 = 1350 \]
Radius of circle = \(r = 1 \) meter.
\[x_4 = r \cdot \cos \theta_4 = 1 \cdot \cos (135^\circ) = -0.7071 \]
\[y_4 = r \cdot \sin \theta_4 = 1 \cdot \sin (135^\circ) = 0.7071 \]
\[x_0 = 3, y_0 = 3 \]
\[(X_4, Y_4) = (x_0 + x_4, y_0 + y_4) \]
\[= (3 + (-0.7071), 3 + 0.7071) \]
\[C_4 = (X_4, Y_4) = (2.2929,3.7071) \]

5. Coordinate C5 at \(\theta_5 \):
\[\theta_5 = 1800 \]
Radius of circle = \(r = 1 \) meter.
\[x_5 = r \cdot \cos \theta_5 = 1 \cdot \cos (180^\circ) = -1 \]
\[y_5 = r \cdot \sin \theta_5 = 1 \cdot \sin (180^\circ) = 0 \]
\[x_0 = 3, y_0 = 3 \]
\[(X_5, Y_5) = (x_0 + x_5, y_0 + y_5) \]
\[= (3 + (-1),3 + 0) \]
\[C_5 = (X_5, Y_5) = (2,3) \]

6. Coordinate C6 at \(\theta_6 \):
\[\theta_6 = 2250 \]
Radius of circle = \(r = 1 \) meter.
\[(X_6, Y_6) = (x_6 + x_6, y_6 + y_6) \]
\[= (3 + (-0.7071),3 + (-0.7071)) \]
\[C_6 = (X_6, Y_6) = (2.2929,2.2929) \]

7. Coordinate C7 at \(\theta_7 \):
\[\theta_7 = 2700 \]
Radius of circle = \(r = 1 \) meter.
\[x_7 = r \cdot \cos \theta_7 = 1 \cdot \cos (270^\circ) = 0 \]
\[y_7 = r \cdot \sin \theta_7 = 1 \cdot \sin (270^\circ) = -1 \]
\[x_0 = 3, y_0 = 3 \]
\[(X_7, Y_7) = (x_0 + x_7, y_0 + y_7) \]
\[= (3 + (0),3 + (-1)) \]
\[C_7 = (X_7, Y_7) = (3,2) \]

8. Coordinate C8 at \(\theta_8 \):
\[\theta_8 = 3150 \]
Radius of circle = \(r = 1 \) meter.
\[x_8 = r \cdot \cos \theta_8 = 1 \cdot \cos (315^\circ) = 0.7071 \]
\[y_8 = r \cdot \sin \theta_8 = 1 \cdot \sin (315^\circ) = -0.7071 \]
\[x_0 = 3, y_0 = 3 \]
\[(X_8, Y_8) = (x_0 + x_8, y_0 + y_8) \]
\[= (3 + 0.7071,3 + (-0.7071)) \]
\[C_8 = (X_8, Y_8) = (3.7071,2.2929) \]

4.3. Selected Grounding Grid Models Layouts

Basic Layout of all the Grounding Grids is same with some minor changes such as the position of diagonal branches and the size of these diagonal branches and the quantity of these branches.

All the proposed models are mentioned below each of them mentioned with their changes

a) Unequally spaced grounding grid with smaller diagonal branch.
b) Unequally spaced grounding grid with larger diagonal branch.

c) Unequally spaced grounding grid with both smaller and larger diagonal branches.

In the Figure 9 only one diagonal branch is present denoted by conductor S13 meeting the nodes 5 and 9 in the first mesh of the grid which is smaller in size located between the nodes 5, 6, 9 and 8.

In this model Grid has both diagonals mentioned above both smaller and larger in same meshes 1st and 3rd.

Fig. 9. Grounding Grid Layout of Unequally Spaced Grounding Grid with Diagonal Branch in the Smaller Mesh.

Fig. 10. Grounding Grid Layout of Unequally Spaced Grounding Grid with Diagonal Branch in the Larger Mesh.

4.4. Discussion on Results of All The Proposed Models

Comparative Graphs of all the results of the proposed models are given below for equivalent resistivity and magnetic field intensity.

Fig. 11. Grounding Grid Layout of Unequally Spaced Grounding Grid with 2 Diagonal Branches in both Smaller and Larger Mesh.

Fig. 12. Equivalent Resistivity and Magnetic Field Intensities Comparative Plot at all Measuring 8 Coordinates of Unequally Spaced Grounding Grid with Diagonal Branch in Smaller Mesh.
Table 1: Average Equivalent Resistivities at all the Specified Coordinates of the Experimented Models.

<table>
<thead>
<tr>
<th>Measuring Coordinate</th>
<th>Unequally spaced Mesh with Smaller Diagonal</th>
<th>Unequally spaced Mesh with Larger Diagonal</th>
<th>Unequally spaced Mesh with both Smaller and Larger Diagonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁</td>
<td>0.2758</td>
<td>0.2889</td>
<td>0.2758</td>
</tr>
<tr>
<td>C₂</td>
<td>0.2982</td>
<td>0.2752</td>
<td>0.2982</td>
</tr>
<tr>
<td>C₃</td>
<td>0.2736</td>
<td>0.2856</td>
<td>0.2736</td>
</tr>
<tr>
<td>C₄</td>
<td>0.2933</td>
<td>0.2933</td>
<td>0.2933</td>
</tr>
<tr>
<td>C₅</td>
<td>0.2955</td>
<td>0.2922</td>
<td>0.2922</td>
</tr>
<tr>
<td>C₆</td>
<td>0.2944</td>
<td>0.2965</td>
<td>0.2965</td>
</tr>
<tr>
<td>C₇</td>
<td>0.2851</td>
<td>0.2878</td>
<td>0.2878</td>
</tr>
<tr>
<td>C₈</td>
<td>0.2752</td>
<td>0.2752</td>
<td>0.2752</td>
</tr>
</tbody>
</table>

Table 2: Average Magnetic Field Intensities at all the specified coordinates of the experimented models.

<table>
<thead>
<tr>
<th>Measuring Coordinate</th>
<th>Average Magnetic Field Intensity (A/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unequally spaced Mesh with Smaller Diagonal</td>
</tr>
<tr>
<td>C₁</td>
<td>313.16</td>
</tr>
<tr>
<td>C₂</td>
<td>205.06</td>
</tr>
<tr>
<td>C₃</td>
<td>344.96</td>
</tr>
<tr>
<td>C₄</td>
<td>90.3</td>
</tr>
<tr>
<td>C₅</td>
<td>59.3</td>
</tr>
<tr>
<td>C₆</td>
<td>78.38</td>
</tr>
<tr>
<td>C₇</td>
<td>272.11</td>
</tr>
<tr>
<td>C₈</td>
<td>325.17</td>
</tr>
</tbody>
</table>

Coordinates C₄ and C₈ are identical in all three models so as a result they have same values for Equivalent resistivity and Magnetic field intensity for all three proposed models because these lies in the middle of the
Coordinate C₁ in 2nd model Figure 10 will have moderate MFI and Moderate equivalent resistivity coz of moderate current flowing through it I₂ with lesser value and I₁ with higher value opposing each other and net current is moderate.

From Coordinate C₅ to so on the 2nd model Figure 10 is same as the 3rd model Figure 11 so the output result of both models are approximately same, at C₅ in 1st model Figure 10 there is no larger diagonal so it lies in between the larger meshes which are already flowing lesser currents I₃ and I₄ oppose to each other so nullifies each other and net current is the least of all as a result equivalent resistance is highest of all and the MFI is least of all the values of 1st Model Figure 9.

C₅ in 2nd and 3rd Model has a neighboring larger diagonal branch due to which in case of 2nd Model Figure 10 two currents are flowing from C₅ I₂ and I₃, I₃>I₂ so some net current flows as a result of the opposition so equivalent resistance is relatively smaller and MFI is relatively larger than C₄ but still less than C₇.

C₆ coordinate in case of 1st model Figure 9 lies in almost at the middle of mesh no 3 the weak magnetic fields are produced due to the larger mesh size so lesser eddy currents are induced as a result larger value of equivalent resistivity but not the least and weaker MFI but still larger than C₅.

C₇ for 2nd and 3rd model are same and have almost same values as it lies almost on top of the large diagonal branch where in case of 2nd Model I₃ and I₄ flowing opposite to each other and with exactly same values which are lesser due to larger diagonal branch size and net current is the least of all the others even considering all other models too so the equivalent resistivity is the highest of all the models and Magnetic Field intensity is the least of all the other models.

C₇ coordinate in case of 1st model Figure 9 correlates to C₃ in 2nd Model Figure 10 and have almost same values of equivalent...
resistivity and magnetic field intensities describer earl.

C7 coordinate in 2nd model Figure 10 and 3rd model Figure 11 has same results due to same configuration in case of 2nd model Figure 10 currents I4 and I5 are flowing from C7 both of these currents are not similar and opposite to each other due to which some net current flows which is lesser than the current of C7 in model no 1 and has a bit lesser magnetic field intensity and a bit higher equivalent resistivity than C7 in model no 1

5. Conclusion and Future Scope

Starting from the scratch the physical position of a single grounding conductor leads onto finding the complete oriented angle of the grounding grid.

Magnetic field intensities in the middle of smaller loops are stronger than the middle of bigger loops and the equivalent resistivity in the middle of the smaller loops are greater than the equivalent resistivity at the middle of the bigger loops.

Diagonal Elements at the middle of the Loops increases the Equivalent resistance and decreases the Magnetic field intensity.

Conductor shared by the bigger loops have the least value of Magnetic field intensity and highest value Equivalent resistivity.

Diagonal Branches and unequal sizes of loops results in unbalanced and unequal flowing currents.

Magnetic Field Intensity on the diagonal branch of smaller loop is greater than the diagonal branch of larger loop.

There is still scope in finding the configuration of grounding grid using Transient Electromagnetic Method as it will be next feasible step taken in fault diagnosis of grounding grid after orientation detection.

AUTHOR CONTRIBUTION

Usman Zia Saleem: Conceptualization, Methodology, Software, Validation, Investigation. Safdar Raza: Supervision, Project Administration, Investigation.

DATA AVAILABILITY STATEMENT

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

CONFLICT OF INTEREST

Authors of this paper declare no conflict of interest.

FUNDING

This paper is composed from research that was not funded by any organization or institution.

REFERENCES

